ABSTRACTS

ON CALCULATING THE OPTIMAL DIMENSIONS
AND PERFORMANCE PARAMETERS OF
SPRAY NOZZLES

R. A. Burtseva and A. T. Litvinov UDC 66.011+66.069.83

A procedure is shown for calculating the optimal dimensions and performance parameters of spray
nozzles, taking into account the motion of particles or liquid droplets due to inertia as well as the location
of the device.

The differential equations of motion are solved for particles or liquid droplets in the active zone,
with the effect of inertia during deceleration (V; — 0) included in the hydraulic drag coefficient under the
assumption that the particles are spherical in shape and that their diameter and their density do not sig-
nificantly change during the motion.

Design equations for calculating the time t and the path Ij of the motion of particles due to inertia
are derived and used for determining the optimal nozzle dimensions as well as the diameter-to-height ratio.

1. Along the nozzle diameter (x-axis):
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where L = 4d(p,—py)/3Apy.
2, Along the vertical nozzle axis (y-axis), with the transverse gas velocity Vg taken into account:
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where F = [a(Vjcos¢ iVG,)2 + B(Vicos ¢ = V) = g (aVé +BVg g)7l; P =Bv/2Ad.
The sedimentation rate of particles is calculated by the formula

Vs=05(—ay + V &l +4B), (M
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where
oy = Byv/Asds B1 = 4dg (p, — py)/34sp;-

It is shown that the initial velocity V;j of particles or liquid droplets, the spray jet angle 2¢ and, par-
ticularly, the particle diameter 4 are decisive factors in the choice of nozzle dimensionsand the diameter-
to-height ratio. For particles with a diameter d = 100 i and 2¢ = 60° the nozzle diameter is much larger
than the height. In this case the particles remain suspended within the active nozzle zone for the rated
length of time.

An example is shown to illustrate the calculation of optimal dimensions and performance parameters,
also of the nozzle location and the spray intensity as functions of the dispersion spectrum of particles or
liquid droplets.

NOTATION

A, B are constants, respectively equal to 0.12 and 37 for the motion of particles or liquid droplets
due to inertia with a Reynolds number Re = 300;

Ag, Bg  are constants, respectively equal to 0.6 and 33 for droplets settling with a Reynolds number Re
= 300, and respectively equal to 0.402 and 40 for spherical solid particles;

d is the diameter of particles or droplets, m;

P1s P2 are the densities of the medium and of the particles or droplets, respectively, kg/m?;

n, v are the dynamic and kinematic viscosities of the medium, N-sec/m? and m%/sec, respectively;
Vi, Vix are the initial and relative velocities of a particle, m/sec;

Vg is the sedimentation rate of particles or droplets, m/sec;

X, ¥ are the coordinate axes along the nozzle diameter and the nozzle height, respectively, m;

g is the gravitational constant, m/sec?;

2¢ is the angle of the spray jet, ang. deg.

THERMAL STRESSES IN A HOLLOW CYLINDER
OF FINITE LENGTH

G. M. Bartenev and A. I. Zhornik UDC 539.30:536.248

Along the inside surface (radius r = rg) and the outside surface (radius r = rg) of a hollow cylinder of
- finite length 0 = z = 7 and with transient internal heat sources of density q(r, z, 7) there flows a fluid whose
temperature field ¢ (z, T) is given. The heat transfer at the inside and the outside surface of this cylinder
is effected by convection, but the respective heat transfer coefficients h; and h, have generally different
values. The temperature of the end surfaces is the same as the temperature of the fluid.

The initial cylinder temperature f(r, z) is a function of the space coordinates. The thermophysical
properties are assumed constant. The problem is reduced to solving the equation
1 2 2 .
vl ) e e g
with the following initial and boundary conditions:
0(r, 2, 0) =9z, O)—[(r, 2),
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where 0(r, z, 7) = ¢(z, 7)-T(r, z, 7).
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By successive finite Fourier-sine transformations and a finite Hankel transformation, the solution to
this equation can be obtained in the form:
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where yp are thé roots of the transcendental equation
myV, (my) = — BiyV, (my). (2)

The first six roots of Eq. (2) are calculated here for the case where both referred heat transfer co-
efficients are equal (hy = hy) with m = rg/rc =0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 and Bi, = 2, 5, 10,
15, 20, 30, 40, 50, 60, 80, 100, 200, 300.

The corresponding thermoelasticity problem is solved by the Goodyear method.

NOTATION
T(r, z, T) is the cylinder temperature;
a is the thermal diffusivity;
c is the specific heat of the material;
p is the density of the material;

Bi; = hy/r, is the Biot number for the inside surface;
Biy = hy/re  is the Biot number for the cutside surface.

SOLIDIFICATION OF A MELT IN A WATER-COOLED
ANNULAR CAVITY

V. A. Zhuravlev UDC 536.21

An approximate solution is given to the problem of bilateral solidification in an annular cavity and is
applied to the conditions of continuous casting of hollow ingots. In practice this process follows the con-
ventional scheme [1]: molten metal is poured from the top down into the gap between cylindrical walls of
an inner and an outer crystallizer, whereupon the frozen ingot is continuously pulled down at a constant
speed. Below the crystallizers it passes through a secondary cooling zone and there its sotidification is
completed.

N. I. Lobachevskii State University, Gor'kii. Original article submitted February 15, 1971; ab-
stract submitted September 30, 1971.

516



Mathematically the problem is solved by the well-known Leibenzon approximation method [2]. Within
this approximation one determines the coordinate of approach () between the outer and the inner crystalli-
zation front:

2 2 2
92—<§° \2~ 1 1 —gy4¢glng /Tsz-—T81>
2=

R] 2k + 21ink \ T¢—Tg (1)

with the radius of the inner crystallizer Ry, the radius of the outer erystallizer Ry, k = Ry/R,, the tem-
perature at the ingot surface on the side of the outer crystallizer Tg,y, and the temperature at the ingot
surface on the side of the inner crystallizer Tgy.

It is indicated that under practical conditions [1] | Tgy—Tgy{ < T§~Tgy and a simpler version of for-
mula (1) can be used

g1
oink (2)

e =
which involves only the ingot geometry.

The quantity g, is one of the process parameters involved in the continuous casting of hollow ingots.
With this parameter known, one determines the time required for complete solidification of a hollow ingot.
Thus, in the approximation (2} one finds here that
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with the heat of crystallization o, the specific heat ¢, the freezing temperature Tf, the temperature of the
melt Ty, and the Fourier number Fo.

For illustration, we determine the total solidification time under the following conditions: k = 10,
Ty = 1783°K, Tf=1743°K, and Tg = 1273°K. Expression (3) yields Fo = 14.5.
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A METHOD OF CALCULATING THE HEAT TRANSFER
IN A PERIODIC-DUTY FURNACE

V. M. Shevelev UDC 669.046.4

A method is proposed by which the external and the internal heat transfer can be calculated at the
same time for a periodic-duty furnace operating in identical cycles: cold metal is placed inside the fur-
nace and taken out after it has been heated up to the desired temperature; this eycle is then repeated.

The temperature of the flame is assumed uniform over the volume; the temperature of the metal
and the temperature of the furnace wall are assumed uniform over the surface. All furnace components
are assumed to behave as gray bodies. On this basis, the external heat transfer is calculated by the zonal
method with the heat balance in the chamber taken into account.

For calculating the internal heat transfer, the metal and the furnace wall are treated as infinitely
large plates of finite thickness. The transient temperature field here, with boundary conditions of the

Original article submitted December 29, 1969; abstract submitted September 5, 1971.
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second kind, is calculated with the aid of the finite Fourier-cosine transformation. Moreover, the thermal
fluxes at the boundaries are determined from the external heat transfer. The calculation procedure is
specially modified for the case of a "thin" metal piece.

The proposed method is useful for calculating the heat transfer in a furnace which operates under a
constant heat load and at a constant wall temperature. A specific example is shown for illustration.

EFFECT OF A THIN HETEROGENEOUS INCLUSION ON
A TWO-DIMENSIONAL STEADY-STATE FIELD

I. M. Abdurakhmanov UDC 536.2

The author analyzes the perturbation of a two-dimensional steady-state temperature field by a thin
heterogeneous inclusion (or crack) whose thermal conductivity k is different from the thermal conductivity
k of the base medium.

The following conditions are derived from the law of heat conservation along an inclusion:

o ak,

R — = —g (Tt — T~ = , ,

136 g ( ), & Sty <k (H
aT " ak
o P — . .

by 5 T a @r—v7), g Sy | B>k (2)

with TH, T~ and 9, ¥~ denoting the limits of temperature T and of the flow function ¥ as inclusion Tis
approached from the left side and from the right side, respectively, this inclusion having the length 2a and
the width 2hgh,(s) at section s (I sl < 1, hy = const).

The complex potential W(z) = T + iy, which will satisfy condition (1) along T' and which will converge
to a given analytic function F(z) at a far distance from T is sought for &£ «< 1 in the form of a series in in-
tegral positive powers of parameter &:

1 j* oy, () dt

W(z)=F()+ Eekw/h (@, Wh(z)=-2—- t—z ©
7=0

L
For determining the unknown densities wy(t) one obtains here a system of singular integrodifferential
equations.

In greater detail is considered the case where I' is a straight-line segment and it is proved that
series (3) converges uniformly when & < /2N, '
N<7L, L= xlnlaxl [VT=45 /& (s)]. 4
Si<

When € > 1, the complex potential is sought in the form of a series in integral negative powers of &.

To illustrate this method of analysis, one considers here the effect of a poorly conducting flat ellipti-
cal inclusion on a uniform temperature field, on a thermal flux bending around a right angle, and on a
source-type field. For a well conducting inclusion, i.e., for boundary condition (2), the problem is solved
analogously.

It is pointed out that similar problems arise in the filtration theory, in electrostatics, in magneto-
statics, and in the analysis of steady-state electric fields produced by currents.

Institute of Physics, Dagestan Branch, Academy of Sciences of the USSR, Makhachkala., Original
article submitted February 9, 1971; abstract submitted August 24, 1971.
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STEADY-STATE TEMPERATURE DISTRIBUTION
ON A WEDGE SURFACE WITH MIXED-TYPE
BOUNDARY CONDITIONS

B. A. Vasil'ev UDC 536.21

An effective method of solving problems in potential theory with mixed-type boundary conditions is
the method of paired integral equations with a subsequent reduction to a one-dimensional integral Fred-
holm equation of the second kind with a symmetric kernel [1-4].

The steady-state surface temperature distribution is considered in the case of a wedge whose one
plane remains at a constant temperature while the other plane is thermally insulated over a finite region
adjoining the common edge but emits heat according to Newton's law from the rest of its area into a
medium at zero temperature.

In cylindrical coordinates this problem reduces to solving the Laplace equation for the following
boundary conditions:
T=Tg =0 0Lp<w,
—l~-a—T=0 p=y, O<p<a,
oo T ’ (1)
v %.%-—i—hT:O, =y, a<p<oo.

Here h is a positive constant. With the aid of functions constructed earlier in [5, 6], the problem is re-
duced further to the integral equation

TE =T +h [ TOKD tpdr, 0L <a (2)
0

Here T(p) is the unknown temperature distribution on the wedge surface ¢ =v. For wedge angles v = 7/2m
(m =1, 2, 3...) function T(p) and kernel K,(Y')(rp) are expressed in closed form in terms of an integral ex~

ponential function, and an effective numerical solution of Eq. (2) becomes possible.

LITERATURE CITED

N. N. Lebedev, Dokl. Akad. Nauk SSSR, 114, No. 3 (1957).

N. N. Lebedev and I. P. Skal'skaya, Zh. Vychisl. Matem. i Matem. Fiz., 7, No. 2 (1967).
N. N. Lebedev and I. P. Skal'skaya, ibid., 9, No. 6 (1969).

Sneddon, Mixed-Boundary-Value Problems in Potential Theory, New York (1966).

B. A. Vasil'ev, DU, 6, No. 3 (1970). '

B. A. Vasil'ev, Inzh.-Fiz. Zh., 9, No. 2 (1966).

SOl W

F. Engels Institute of Soviet Commerce, Leningrad. Original article submitted April 7, 1971; ab-
stract submitted September 5, 1971.



BASING THE FUNDAMENTAL LAWS OF FILTRATION
ON THE EXTREMALITY PRINCIPLES IN THE
THERMODYNAMICS OF IRREVERSIBLE PROCESSES

R. G. Isaev UDC 532.546:536-12

When a viscous filler fluid flows through pores in an industrial process bed, then a macro-unbalanced
process will occur due to the presence of irreversible thermodynamic forces and fluxes. '

In order to establish a relation hetween the irreversible thermodynamic forces and fluxes in a physi-
cally nonlinear situation (filtration in the case where Darcy's linear law is not valid), one must apply the
principle of minimal irreversible forces (G. Ziegler), according to which the real velocity X yields the
minimum irreversible forces Xl({l) which satisfies the condition

X iy =D () 2 0. |

when the magnitude of the dissipation function and the direction of the irreversible force are known. On the
basis of this principle, it is possible to establish a relation between irreversible forces and velocities in
the form

oD

oxy,

X =n (1)
Here n = ((8 D'/B)i]- ))ij )"! D with D denoting the dissipation function. Assuming that an irreversible force
X(l) = —grad ¢ (¢ denoting the filtration potential) and introducing a dissipation function in the form

s e
D=— ? ad - — } B: i %, 2

2 3 =

i=1 .

=1

one obtains (for a one-dimensional flow in the bed)} a nonlinear relation expressed as

do o - B - :
T T 2 x - 3 (x)® sgn x. (3)
For a three-dimensional flow in an anisotropic bed, based on a dissipation function
D = ayidd + | Bipdaii®], (4
we have
o/ ., .
— i = ol - Bl sgn (). ) -

Here ajj and Bjjk are tensors of the filtration resistance corresponding to linear-law and to nonlinear-
(square)-law filtration. By defining the dissipation function in still more general terms, one obtains the
universal relation in the form

dp .
—o® o = P (yjohy —1.

Groznyy Petroleum Mstitute, Grozayy. Original article submitted September 10, 1969; abstract
submitted September 14, 1971.
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UNJAXIAL ELONGATION OF ULTRAELASTIC
POLYVINYL CHLORIDE

V. D. Fikhman, V. M. Alekseeva, UDC 678.01:532.135
and G. V. Vinogradov.

Relations between real stress and elongation have been established for polyvinyl chloride fibers at
temperatures in the 90-160°C range. Deformations were produced in two modes: at constant rates of elon-
gation (v = 0.0079, 0.078, 0.769, and 8.33 mm/sec) and at a constant rate of strain (¢ = 0.002 sec™),

Based on the results of elastic recovery tests, the total elongation of a specimen (a) was split into
an ultraelastic component (ae) and an irreversible component (af). If the initial length of a specimen is
Iy, its length after deformation is I, and its length after elastic recovery is I', then we have a = T
= (I/U)(1'/1y) = aent.

The real stress and the ultraelastic deformation are both extremal functions of . The occurrence

of maxima here is explained by a stress relaxation and by processes which result in a gradual breakdown
of a specimen.

Ultraelastic deformation was found to be the principal component of total deformation in the case of
polyvinyl chloride tested for elongation in those two modes.

The dependence of stress on the magnitude of ultraelastic deformation at temperatures far from the
vitrification point is accurately enough described by the equation P = E(ai-agl) (Fig. 1).

It has been established that the ultimate strength of polyvinyl chloride fibers rapidly vitrified after a
certain definite elongation will depend on the amount of accumulated ultraelastic deformation.

7,

P10 ) x
Y% [to0Tia0]/m0 P
0073 | o w1 @ >/
6t 0769 | x | 0|+ - -— .
. 833 A o | ¢ / . [}
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Fig. 1. Real stress as a functionof ultraelastic defor-
mation.

Original article submitted May 18, 1971; abstract submitted September 14, 1971.
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ONE PROBLEM OF HEAT CONDUCTION WITH
MIXED-TYPE BOUNDARY CONDITIONS AND A
POINT SOURCE OF HEAT

M. G. Strunskii UDC 536.2.01

An infinite plane is considered on which the surface of a circular disk with the radius @ is thermally
insulated while convective heat transfer occurs from all the remaining surface to the surrounding medium;
on the disk axis at a distance z; below the plane is located a point source emitting a thermal flux Q.

In order to determine the steady-state temperature field in the homogeneous medium containing the
point source of heat, it is necessary to integrate the Poisson equation

AU W U divg

a'2+’ ar+0z2— A7
with g = 0 everywhere except at point (z = zy, r = 0) at which q = « and with the boundary conditions
g =0 for 2==0, r<a,
oz
U—h W =0 for z=0, r>a,
0z
where

A
h = —==const > 0.
o

The solution to this problem, obtained by the method of integral transformations and on the basis of
a few special theorems, has the form

©

U < [ : 1 ] + j [A(p)- _— exp (— zp) ] e (= 2p) o U7 (rp)dp,
0

Tamh (VAL (z——zf,)z.+ V4 (z + 2)? 2nA t4-hp
with the unknown coefficient A (p) found by the formula
A(p)= | @ (t)-sin pt dt.
0

The auxiliary function ¢(t) is determined from the Fredholm equation of the second kind
2 a
v+ = [ K Demar=ro
0

with the continuous kernel

ottt 4+t _tt = =1l >[l‘—~‘l1[ lt— 1|
K, ©)= o [sm " si B -}~ cos Y Ci A sin A si P’ — cos P’ Ci A ]

and the free term
Q 7 exp (— zp) sin pt
%A j 1+-Ap

f@=

Various special and limiting cases of the problem are considered.

When z, = z = 0, for instance, i.e., when the heat source lies at the center of the thermally insulated
circle and when only the temperature field in the boundary plane is of concern, the temperature is deter-

mined according to the equation
@ (L _ = ly(r Y ool
2k {r T2 T a [H°(h)*N"(h>]}+§’4(””z"”ol+hﬂ o

Coefficient A(p)IZD:O is found here by the same formulas as in the general case, except the formula
for the free term now expressed in explicit form. '

U]z,,=z=0 =

It is easy to see that the effect of a thermally insulated region in this case is characterized by the
integral term alone; whena = 0, i.e., without thermal insulation, coefficient A(p)lZO =¢ = 0 and the temper-
ature distribution is determined by the term inside the large bracket alone.

Original article submitted November 26, 1970; abstract submitted October 22, 1971.
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It is pointed out, in conclusion, that the probiem analyzed here arises also in other applications of
potential theory as, for example, in ealculating the steady-state electric field produced by linearly polariz-
ing electrodes.

NOTATION

U is the temperature;

Q is the thermal flux;

q is the thermal flux density;

h is the material parameter with the dimension of length;
A is the thermal conductivity;

o is the heat transfer coefficient;

a is the radius of thermal insulation;

Zy is the distance from the point source of heat to the boundary plane;
r, z are the cylindrical coordinates;

f, ¢ are the function signs;

8i, Ci are the integral-sine and integral-cosine, respectively;

Jy is the zeroth-order Bessel function of the first kind;

Hy, Ny  are the Struve function and the Neumann function, respectively.

DETERMINING THE HEAT TRANSFER COEFFICIENT
IN TRANSIENT HEAT CONDUCTION PROBLEMS ON
THE BASIS OF MEASURED SURFACE TEMPERATURE

O. T. Il'chenko and L. I. Shifan UDC 536.21

The problem considered here is that of determining the parameters of heat transfer at a surface
from temperature measurements.

In the case of a symmetrical preblem, the solution is sought in the form [1)

¢ —

2 G 10 N D R % ' - ("““”“}d L
v _bs V= [exp U i <t~r>}+”pl i@ o) | (@

Applying in succession the Abel and the Laplace transformation, we obtain an integral equation for
the thermal potential function p(t) in terms of function U(x, t) values.

Inserting p(t) into the boundary condition, with the aid of the Abel transformation, we obtain aa inte-
gral equation in the unknown function Bi(t):
¢

— © ¢
Bi () Ve (v) —U (1, 1)] ¥ 2 _ U, on i n )
=20, g = SRV Gt LU L — = ds. 2
25 View BRI \_, Y (5 Vii—or P wi—n)” @

Unlike certain analytic solutions {2, 3|, this equation solved for Bi(t) does not contain derivatives of
temperature functions at the surface. This certainly improves the accuracy of the solution, since deriva-
tives of a function established experimentally cannot always be calculated within sufficient accuracy.

The procedure for solving the integral equation (2) is shown with examples applicable to the solution
of inverse problems.

Khar'kov Polytechnic Institute, Khar'kov. Original article submitted May 20, 1971; abstract sub-
mitted October 19, 1971,
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A HEAT-CONDUCTING ROD IN A MEDIUM WITH
AN ALTERNATING TEMPERATURE

I. M. Shnaid UDC 538.2

The linear heat conduction problem is analyzed for the case of a thin long rod in a medium (I) whose
temperature t, is a periodic function of time 7. One end of the rod is free; the other end is in thermal
contact with a heat conducting wall, where heat is transferred directly from medium I and to medium II
having a constant temperature t,. On the basis of these stipulations, the rod temperature is described by
the differential equation '

of ot M 9%,
ap "ot ap TS t=h D
with the uniqueness conditions
a_t
o0x

=0, (2)

x=0

& A a1 ( Lo, ) ]
SL M E )y
[617 + Cw Ox + Cw \Run Rw, o

. £ (%)
, RuCo’

3

In order to obtain a solution which is periodic in time, one expresses functions t;(7) and t(x, 7) in the form

t(3) = E T1n exp (f0p7),

n=>90

t(x, T) :Z T, (x) exp (iwaT),

n=0
where i = v—~1 and wy = 2m/7,.
[Eq| 82
a8 »
g5
94 \
\ 0
g 4 g /4 s
Fig. 1

Odessa Engineering Institute of the Refrigeration Industry. Original article submitted September 3,
1970; abstract submitted October 19, 1971.
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From Eq. (1) and the boundary conditions (2), (3) one determines the coefficients Ty(x) and then the
instantaneous values of thermal power Qp, Qy transmitted through the lateral surface and the end surface
of the rod, respectively:

4 ©

Q = | ap (i—t) dx = X\ Qpn cxp (i57).

0 n=—_

o |
Q=12 =N Qrexp (i0n).

ax o=l 'néo

The most characteristic example is analyzed here, namely where the fluctuations of the wall tem-~
perature are negligible. Then

T = Tin [1 ch (ap-+bni) sz:‘ (4)

18, | ch (antbai) s

i (ayt+bu
Qpn¥apl Lin [.6n b (@t L)S}

1+, | (@n-t-bni) s
; Tin sh {a,-+bpi) sz
(an -+ bpi)s  ch(ay+bui)s

Qfn = ap
with

The relations derived here indicate that the performance of a heat regenerator with a regular wire
(rod) mesh depends appreciably on the thermal conductivity of the latter and on the heat transfer at the
walls. Only at high values of parameter s does the effect of thermal conductivity and heat transfer at the
walls become negligible,

When the temperature of a medium varies periodically, then the effectiveness of a fin | Egql = iQpn
/Qpnls =¢l mustbe determined for each harmonic separately as a function of s and 6,. At s = const, ac-
cording to Fig. 1, a large 8, increases the effectiveness of a fin. It is interesting to note that the curves
of | Enl vs s pass through minima. The value s = sg which corresponds to | En lmin increases infinitely as
0pn — 0. When s > se and 8p # 0, a longer fin is more effective, while at the same time

lim | Enj= i i
e (1+82)7
NOTATION
b4 is the rod length coordinate;
L, f, p are the length, cross section area, and perimeter of a rod, respectively;
A, 0, C are the thermal conductivity, density, and specific heat of rod material, respectively;
o is the heat transfer coefficient;
Cw is the total heat capacity of a wall;
Ry Rwe are the thermal resistance from the wall to medium I and from the wall to medium II, re-
spectively;
Ty is the period of function t;(7);
a is the number of the harmonic.



TEMPERATURE FIELD AND ELECTRIC FIELD IN A PLANE
LAYER WITHA TEMPERATURE-DEPENDENT RESISTANCE

R. S. Kuznetskii UDC 538.3+536.212.2

The steady-state temperature field t(x) and electric field e(x) in a conductor, in the one-dimensional
analysis disregarding any thermoelectric effects, are described by the following system of equations:

Apt" = —e?, efp=j=const, (1)
according to which the field is proportional to p; the thermal conductivity is considered constant and the
electrical resistivity a function of the temperature p = p(t).

An integration of the nonlinear equations (1) yields an expression which can be written as

tm
d
B f — = e=ip U ), (2
l/j pdt

with the coordinate xy, corresponding to the only temperature extremum: a maximum (t,,). Both param-
eters are determined from the boundary conditions.

Wheun p = p(1 + at), for instance, we have closed expressions for t and e as well as for the thermal
flux density and the electric potential:

1
- —;[(lwm) cosx—x) )/ B o ~1], e=pof (1-+atm) cos j (e—zm) |/ £0 o (3)

g=j (1 +atm) V}‘p" Sin j (x—2xp) l/p_"oc, =5 edx = -qu. (4)

X
We consider a conducting plane layer (a plate) or a prismatic (cylindrical) beam with a segment of
the lateral surface 0 = x =< g thermally insulated, with the temperatures t(0) = 0 and t(0) = t; = 0 and the
electric current density j given. Moreover, x and ty, are determined from the equations

51/ "ot g i'/f pdt _”a*m‘/ﬂ @

or, when the electrical resistivity is a linear function of the temperature, from the equations

1 -
- V )44 sin? — ) 0
a 14-aty—cos ¥V Ga (@) +4s 2 Ve .
Xm = ——== arcig ——— v Im= — L. (6)
V 6o sin 1/ 8o, a sin ¥ 0 R

with 8 = (aj)zpo/h. For convenience, with the aid of identities

COS X—Xy, cos x 1ot —cos VB sin x
(4-adm) sin am Véa = —V8a = —r=

sin @ sin}y 6a cos @

we transform expressions (3) and (4) so that they will not contain xy, and ty,.

Vo 7

For instance, in the case of boundary conditions symmetrical with respect to the center section
(t; = 0) we have
a 1 I 1+-oty—cos ¥V 0a Ve

K 2= T s by o= ‘(SQCVGC( —1), p— = {g . (8)
w2 T e sin V6 2

In conclusion, respective approximations of formulas (6), (3), and (4) are derived for the limiting
case fa « 1.

VNIPIChermeténergoochistka, Khar'kov. Original article submitted December 3, 1969; abstract
submitted October 28, 1971. '
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MASS TRANSFER DURING CHEMICAL INTERACTION
BETWEEN A SOLID AND A LIQUID ACCOMPANIED
BY EMISSION OF GAS

G. A. Aksel'rud and A. I. Dubynin UDC 66.015.23

A theoretical and experimental study has been made concerning the kinetics of heterogeneous chemi-
cal processes which occur in a solid-liquid system accompanied by gas emission in the form of bubbles.

It has been shown in [1] that two kinds of effects result for bubbling: 1) the emitted gas bubbles dis-
place some liquid and, as a consequence, the rate of diffusion-limited heterogeneous reactions increases;
2) the generated gas bubbles shield part of the solid surface and, as a consequence, the total diffusion is
reduced.

Owing to a combination of both effects, an increasing mass flow density causes the mass transfer
coefficient first to increase and then to decrease.

Assuming that the kinetic laws of mass transfer under the given conditions of a heterogeneous reac-
tion are identical to the laws of heat transfer during bubble boiling of a liquid, the authors define a system
of parameters respectively paired for the two analogous processes:

heat exchange: mass exchange:
e "o
i~ ] glo™—p7)" I~ Vg '—og)’ (1)
q=aht; IG=kGACGH (2)
W= w36 (3)
o G

Equation (3) follows from the relation

el sy v @

The excess of gaseous products Acg near the reaction surface is established on the basis of the re-
action balance

nkgleg—cgs) =k p (cp~—0), (5)
NuU
pr ,’.ﬂ/f
X
Ll
n
0’ &,
o) —_
ol —
¥ i
0 — 3
10° o o 0 — &
® ° " — 5
& — b
¢ — 7
-
70 -
i w5’ ° 0* Re

Fig. 1. Generalization of test data according to Eq.
(9) on the interaction between CaCOQj;, (CuOH),COs,
Mg, Mn, and acids: 1) CaCO; + HCl; 2) CaCO; + HNOg;
3) (CuOH),CO;3 + HCl; 4) (CuOH),CO; + HNOg 5) Mg
+ HCl; §) Mg + H,S8O,; 7) Mn + HCL.

L'vov Polytechnic Institute, L'vov. Original article submitted September 20, 1971; abstract sub-
mitted October 29, 1971.



Considering that [2]

kn _ 3/ Pr R Dy 23

k l PFG— k G) ’ (6)
we have for the concentration drop of dissolved gas

A ‘R (’DR j2/3
CG=CG—CGs™ DG/

It appears feasible, by extending this analogy, to seek the mass transfer coefficient in the form

Nu=:f (Re, Pr), (8)
where
kel | 3/p_ v wi el
Nu =22 o IGE y/Drop S g o O
Dg  ePr ¥V Dg' Dg v

The kinetics of mass transfer during bubbling was studied in typical interactions between calcite,
malachite, magnesium, manganese and sulfu.ric acid, hydrochloric acid, nitric acid in various concentra-
tions.

The test data were evaluated and plotted on a curve fitting the criterial relation
Nu=6.9Re%*"Pr!/3 (9)

This equation does qualitatively resemble the analogous equation which Kutateladze [3] and Labuatsov
[4] have obtained for heat transfer. This justifies the use of such heterogeneous reactions as "cold" models
in simulating heat transfer processes (during boiling).

NOTATION
cG is the concentration of gas at the reaction surface, kg/m?
CGs is the saturation concentration of gas in a volime of liquid, kg/m3;
CR is the concentration of hydrogen ions, kg/m?
Dg is the diffusivity of gas, m?®/sec;
Dr is the: diffusivity of hydrogen ions, m?/sec;
q is the thermal flux density, W/m?;
qG is the mass flow density of gas, kg/m?;
w is the characteristic linear velocity;
l is the characteristic linear dimension, proportional to the breakaway diameter of a bub-
ble, m;
kg, kr are the mass transfer coefficients, m/sec;
R is the radius of a gas bubble, m;
At is the temperature drop, °C;
T is the heat of evaporation, J/kg;
n is the stoichiometric ratio, kgHz/kggas3
g is the acceleration of gravity, m/secz;

Prr =v/DR is the Prandtl diffusion number for hydrogen ions;
Prg = v/Dg is the Prandtl diffusion number for gas;

Nu is the Nusselt number;

Re is the Reynolds number;

a is the thermal diffusivity, m?/sec;

o is the surface tension, N/m;

v is the kinematic viscosity, m?/sec;

a is the heat transfer coefficient, W/m?-°C;
p' is the density of liquid, kg/m?;

p" is the deusity of vapor, kg/m?

[oTel is the density of gas, kg/m3;

T is the time.

Subscripts

G denotes gas;
R denotes reagent;
S denotes surface.
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Superscripts

! denotes liquid;
" denotes vapor.
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PRESSURE AND VELOCITY DISTRIBUTIONS IN
A LAMINAR DISCHARGE OF FLUID FROM A
PERFORATED PIPE

R. S. Kuznetskii UDC 532.5

For a turbulent flow in a pipe with a sealed end we have, when the discharge through uniformly
spaced perforations along the pipe is laminar (Re < Re, and dvp £ A= VVCRe*p/Z)

(p N _ A, L, 24 o
(pw«»)— g e e O = 9 =0, (1)

4

Here o = n/4 is the Coriolis coefficient, ¢ is the ratio of total perforation area to inside pipe section area;
pand v =pu/p are the density and the kinematic viscosity of the fluid, respectively; I =Lx (0= ] = L,

0 = x = 1) is the pipe length coordinate (subscripts 0 and 1 refer to x = 0 and x = 1, respectively); p(1)

= poh(x) and v(l) = u(x)v 2py/p are the mean-over-the-section excess pressure and the axial fluid velocity

in the pipe, respectively; A = ¢/L is the referred pipe resistance coefficient; w(l) is the discharge velocity
through the perforations; d is the diameter of each perforation; Re = dw/v is the Reynolds number re-
ferred to the perforation diameter (Rex % 10 is critical); Rey = cr = (0d/v}W 2py/p; ¢ = const = 25.2; and
the values of A for various liquids and gases are tabulated.

In dimensionless form Egs. (1) become
R u (rh—puy, w'=—rh; h(0) =1, u{l) =0, (2)

and in this way define the criterial process numbers Rey and ¢. System (2) can be integrated in quadra-
tures only in the extreme cases of very small or very large values of the pipe resistance coefficient; in
the general case it can only be integrated numerically on a computer. The results of such a computer-
aided numerical integration are shown in Fig. 1 for a typical value Rey/y = 5.

It follows from an analysis of system (2) that u(x) decreases everywhere monotonically while func-
tion h(x) has a maximum (h,) at x = 1, increases monotonically whea uy < nr/¢ (i.e., at Re, smaller than
some Re’;), and also has a minimum when uy > nr/¢ (at x corresponding to u/h = ®r/3).

The function hy(Reg) at Re/§ = const has a minimum equal to unity at Rey = 0 and a maximum at
Re = Rej, this maximum increasing with higher Rey/d values. Function uy(Rey) is zero at Re; = 0 and
then increases asymptotically approaching a limit which becomes higher with higher Rey/¢ values.

When Re; < Ref, the values of the monotonically increasing function h(x) increase as Rej increases
and y decreases. When Rej = Reg‘, h(x) has a minimum which decreases (together with all values of h(x))

Original article submitted February 22, 1971; abstract submitted August 10, 1971.
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and shifts toward the right as Re; and ¢ increase; moreover, the maximum h; becomes less peaked. The
values of function u(x) increase as y decreases (more rapidly at higher Re; values) and essentially in-
crease as Rey increases.

TEMPERATURE FIELDS IN MULTILAYER
SEMITRANSLUCENT COATINGS HEATED BY
RADIATION PULSES

V. V. Frolov UDC 532.526.011:536.24

The transient one-dimensional heat conduction problem is analyzed for the case of a multilayer sys-
tem, taking into account distributed absorption of heat from-an external radiant source. The absorption
process is assumed linear. Reflections and concentrated absorption at the interlayer boundaries are also
taken into account. As an example, the temperature distribution problem is solved numerically for a two-
layer protective coating. The external heat load on the coating is represented in terms of a triangular
pulse of a given total energy content, and the intrinsic radiation from the surface of the outerlayer is also
accounted for.

The problem is solved numerically for pulses 60, 20, and 10 sec wide. The total energy in a pulse
corresponds to actual intensities of radiant thermal fluxes passing into the atmosphere, assuming the
passage occurs within about 10 sec.

The numerical solution to the heat conduction problem is obtained by the implicit scheme; the bound-
ary-value equations at each step are solved by combining a reduction to the Cauchy problem with the sweep
method. Moreover, the fundamental system of solutions is presented in the form of piecewise-continuous

functions. The quantity of heat absorbed, as a function of time, is plotted on curves for various values of
the absorptivity and for various pulse widths. Furthermore, instantaneous temperature distributions in
the layers of semitranslucent and fully opaque systems at various instants of time are shown too.

N. E. Zhukovskii Central Institute of Aerohydrodynamics, Moscow. Original article submitted
January 15, 1971; abstract submitted October 28, 1971.
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The results obtained here indicate that, disregarding the bulk absorption of radiant energy by the
system, the errors in the calculated temperature distribution or quantity of heat can be quite appreciable
even at high values of the absorptivity, and that this inaccuracy becomes greater with shorter pulse widths.



